was carried out using SHELXTL (Sheldrick, 1985). The Auatom position was determined by direct methods and the remaining non-H atoms were located using difference Fourier techniques. All non-H atoms were refined anisotropically and H atoms were placed in idealized positions with fixed isotropic displacement parameters $\left[U(\mathrm{H})=0.08 \AA^{2}\right]$.

These studies were supported by the Welch Foundation and the National Science Foundation (grant CHE8708625).

Lists of structure factors, anisotropic displacement parameters and H -atom coordinates have been deposited with the IUCr (Reference: ST1091). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Adams, H.-N., Hiller, W. \& Strahle, J. (1982). Z. Anorg. Allg. Chem. 485, 81-91.
Braunstein, P., Muller, A. \& Bogge, H. (1986). Inorg. Chem. 25, 2104-2106.
Hendrickson, A. R. \& Martin, R. L. (1973). J. Org. Chem. 38, 2548-2549.
Sheldrick, G. M. (1985). SHELXTL User's Manual. Revision 5.1. Nicolet XRD Corporation, Madison, Wisconsin, USA.
Uson, R., Laguna, A. \& Laguna, M. (1989). Inorg. Synth. 26, 85-91.

Acta Cryst. (1994). C50, 1582-1585

Bis(tetraethylammonium) Tetrabromocadmate

M. Geselle and H. Fuess
Technische Hochschule Darmstadt, Fachbereich Materialwissenschaft-Strukturforschung, Petersenstrasse 20, 64287 Darmstadt, Germany

(Received 3 March 1994; accepted 18 May 1994)

Abstract

The crystal structure of the title compound, $\left[\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \mathrm{~N}\right]_{2}-$ [CdBr_{4}], has been determined by single-crystal X-ray diffraction methods. The crystal structure consists of isolated CdBr_{4} tetrahedra, two cations in a swastika conformation (one ordered, one disordered) and one cation in a trans conformation. All cations show strong thermal motion. Automatic structure solution packages failed to yield a chemically relevant result. The structure solution by manual interpretation of the Patterson map is reported here.

Comment

Bis(tetraethylammonium) tetrahalometallates(II), [($\mathrm{C}_{2}-$ $\left.\left.\mathrm{H}_{5}\right)_{4} \mathrm{~N}\right]_{2}\left[M X_{4}\right]$, with $M=\mathrm{Fe}, \mathrm{Co}, \mathrm{Ni}, \mathrm{Cu}, \mathrm{Zn}, \mathrm{Cd}$, and $X=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}$, have been the subject of numerous investigations. So far only the crystal structures of the room-temperature phase of $\left[\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \mathrm{~N}_{2}\left[\mathrm{NiCl}_{4}\right]\right.$ and the isotypic Co compound have been reported (Stucky, Folkers \& Kistenmacher, 1967), in which the metal was found to be tetrahedrally coordinated by Cl atoms and the cation to have a disordered swastika conformation.

Ross, Siddiqi \& Tyrrell (1972) confirmed the tetrahedral coordination of Cd in the corresponding tetrabromoand tetraiodocadmates. Investigations of the optical birefringence showed that the title compound, (I), belongs to the tetragonal crystal system and undergoes two phase transitions at 39 and 311 K (Vlokh, Polovinko, Mokryi \& Sveleba, 1991; Sveleba et al., 1993). In this work we present the crystal structure of the compound in its room-temperature phase.

(I)

Buerger-precession and de Jong Bouman photographs show a $\sqrt{2} / 2 a \times \sqrt{2} / 2 b \times c$ substructure. This substructure may be the reason why neither automatic heavyatom nor direct methods using Xtal3.2 (Hall, Flack \& Stewart, 1992) and SHELXS86 (Sheldrick, 1985) yielded anything chemically discernible. Therefore, the structure solution by manual interpretation of the Patterson map was attempted.

Inspection of the ($u v 0$)-Harker plane confirmed $P \overline{4} 2{ }_{1} m$ as the correct space group. Furthermore, this Harker plane exhibits three prominent vectors (marked with ' X ' in Fig. 1) which delimit an equilateral triangle, the sides of which correspond to interatomic distances of about $3.5 \AA$ identifying it as a face of a CdBr_{4} tetrahedron.

Thus, the basic feature of this structure is CdBr_{4} tetrahedra each with their threefold axis parallel to the crystallographic c axis. This is confirmed by a strong vector at (00 w) corresponding to an interatomic distance of $2.6 \AA$, which in turn is consistent with a $\mathrm{Cd}-\mathrm{Br}$ bond distance.

In projection along the crystallographic c axis the anions should appear as equilateral triangles with a Cd and a Br atom at the centre of mass. Assuming an ordered arrangement of the tetrahedra and avoiding close contacts (i.e. less than $3.5 \AA$) between Br atoms, it is possible to confine the triangles to positions where one of their bisectors lies on the mirror line of the plane group $p 4 g m$. Thus two Br atoms and the Cd atom should lie on the positions $2 b$ or $4 m$ of $p 4 g m$. The substructure mentioned above leads to a very strong vector in ($\frac{1}{2} \frac{1}{2} 0$).

Fig. 1. Contour plot of ($u v 0$)-Harker plane of a sharpened ($E x F$) Patterson map.

Fig. 2. Projection along [001] showing the arrangement of CdBr_{4} tetrahedra deduced from the Patterson map.

This can be accounted for by putting heavy atoms in ($0 \frac{1}{2}$) or ($\left(\frac{1}{4} \frac{1}{4}\right.$). Considering the stoichiometry the only arrangement possible is the one shown in Fig. 2. By inspection of the $\left(\frac{1}{2} v w\right)$-Harker plane this arrangement is confirmed and the z coordinates of the heavy atoms are easily deduced.

Using the heavy-atom positions the cations could be located from subsequent difference Fourier syntheses. Refinement of the absolute-structure parameter showed
that the initial parameters had to be inverted. As a result of rather strong thermal motion the cations are not well defined, which made it necessary to impose restraints on the $\mathrm{N}-\mathrm{C}$ and $\mathrm{C}-\mathrm{C}$ bond lengths. Except for the H atoms the structure was refined by weighted full-matrix least-squares on F. Since no intensity worth measuring could be found beyond 46° in 2θ, not enough data were available to refine the C atoms anisotropically. H atoms were positioned geometrically and maintained at the calculated positions. The H -atom isotropic displacement parameters were fixed at $0.2 \AA^{2}$.

As can be seen from Fig. 3, the structure consists of almost ideal isolated CdBr_{4} tetrahedra, each with one of their threefold axes tilted slightly away from the crystallographic c axis; all face one another. Thus, three kinds of interstitial site are formed: one layerlike and two roughly spherical. To optimize packing the layer-like interstitial is occupied by a cation in a trans conformation, whereas the other cations adopt the swastika conformation. Furthermore, one of the cations in the swastika conformation is disordered, which can be understood by considering the shortest $\mathrm{C} \cdots \mathrm{Br}$ contact distances; these are to the methylene C atoms in the ordered cation and the methyl C atoms in the disordered cation. The ordered cation is prevented from reorientation because the methylene C atoms are 'bracketed' by Br atoms. In the disordered cation only the methyl C atoms are bracketed by Br atoms, which enables reorientation of the molecule by cooperative rotation of the methyl groups around the $\mathrm{C}-\mathrm{C}$ bonds. This type of disorder is similar to that observed in the analogous Ni compound mentioned above.

Fig. 3. ORTEP (Johnson, 1965) view along [001]. H atoms are omitted and N and C atoms are drawn as spheres of arbitrary radii for clarity.

Pohl \& Saak (1984) state that they have determined the crystal structure of bis(tetraethylammonium) tetraiodoferrate. From the lattice parameters and space group, these authors found that the compound should be isotypic with the title compound. However, to date, the crystal structure determination of the ferrate has not been reported.

The lattice parameters of the Ni compound correspond with the substructure observed in the present work. Since the title compound undergoes a phase transition at 311 K , one can suppose that the hightemperature structure is isotypic with the roomtemperature structure of the Ni compound.

Experimental

The title compound was prepared by adding a stoichiometric amount of a concentrated methanolic solution of tetraethylammonium bromide to a hot concentrated solution of cadmium bromide tetrahydrate in methanol. After cooling to room temperature the colourless precipitate was filtered off and recrystallized from hot 90% ethanol/water to yield colourless square platelets which were dried in vacuo.

Crystal data

$\left(\mathrm{C}_{8} \mathrm{H}_{20} \mathrm{~N}\right)_{2}\left[\mathrm{CdBr}_{4}\right]$
$M_{r}=692.53$
Tetragonal
$P \overline{4}{ }_{1}{ }_{1} m$
$a=13.4530$ (9) \AA
$c=14.3945$ (8) \AA
$V=2605.2$ (4) \AA^{3}
$Z=4$
$D_{x}=1.766 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Enraf-Nonius CAD-4 four-
circle diffractometer
$\theta / 2 \theta$ scans
Absorption correction: empirical
$T_{\text {min }}=0.49, T_{\text {max }}=0.99$
4842 measured reflections
1106 independent reflections
Mo $K \alpha$ radiation
$\lambda=0.71069 \AA$
Cell parameters from 25
\quad reflections
$\theta=2.56-10.82^{\circ}$
$\mu=6.92 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
Platelet
$0.25 \times 0.225 \times 0.075 \mathrm{~mm}$
Colourless

1401 observed reflections

$$
[F>2.00 \sigma(F)]
$$

Refinement

```
Refinement on \(F\)
\(R=0.058\)
\(w R=0.079\)
\(S=1.847\)
740 reflections
82 parameters
H -atom parameters not
    refined
\(w=1 /\left[\sigma^{2}\left(\left|F_{o}\right|\right)\right.\)
    \(\left.+0.0015\left|F_{o}\right|^{2}\right]\)
```

$(\Delta / \sigma)_{\text {max }}=0.104$
$\Delta \rho_{\text {max }}=1.37 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-1.21 \mathrm{e} \AA^{-3}$
Extinction correction: none Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV, Tables 2.2B and 2.3.1)

Table 1. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$U_{\text {iso }}$ for C atoms; $U_{\mathrm{eq}}=(1 / 3) \sum_{i} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathrm{a}_{i} . \mathrm{a}_{j}$ for others.				
	x	y	z	$U_{\text {iso }} / U_{\text {eq }}$
Cd	0.7474 (1)	0.7526 (1)	0.7273 (1)	0.062 (1)
Br 1	0.5700 (2)	0.7048 (2)	0.7793 (2)	0.101 (2)
Br 2	0.8700 (2)	0.6300 (2)	0.8032 (3)	0.094 (2)
Br3	0.7554 (2)	0.7445 (2)	0.5479 (2)	0.086 (2)
N1	1/2	1/2	1/2	0.05 (1)
C1	0.545 (2)	0.417 (1)	0.558 (2)	0.094 (8)
C2	0.621 (2)	0.452 (2)	0.628 (2)	0.100 (8)
N2	1	1/2	0.486 (3)	0.09 (2)
C3	0.910 (3)	0.501 (4)	0.421 (4)	0.17 (3)
C4	0.907 (3)	0.593 (3)	0.360 (4)	0.15 (2)
C5	0.911 (3)	0.493 (3)	0.551 (2)	0.09 (1)
C6	0.906 (2)	0.406 (2)	0.618 (2)	0.11 (1)
N3	0.791 (1)	0.291 (1)	0.921 (1)	0.06 (1)
C7	0.833 (1)	0.333 (1)	1.011 (2)	0.11 (1)
C8	0.912 (2)	0.412 (2)	0.997 (3)	0.15 (2)
C9	0.712 (2)	0.212 (2)	0.945 (3)	0.13 (2)
C10	0.659 (3)	0.159 (3)	0.867 (3)	0.16 (2)
C11	0.751 (2)	0.372 (2)	0.858 (1)	0.105 (8)
C12	0.669 (2)	0.427 (2)	0.911 (2)	0.13 (1)

Table 2. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

N1-C1	1.53 (2)	C5-C6	1.52 (5)
$\mathrm{C} 1-\mathrm{C} 2$	1.51 (3)	N3-C7	1.53 (3)
$\mathrm{Cd}-\mathrm{Br} 1$	2.582 (3)	N3-C9	1.53 (3)
$\mathrm{Cd}-\mathrm{Br} 2$	2.576 (3)	N3-Cl1	1.52 (3)
$\mathrm{Cd}-\mathrm{Br} 3$	2.587 (4)	C7-C8	1.51 (4)
N2-C3	1.53 (5)	C9-C10	1.52 (5)
N2-C5	1.53 (4)	C11-C12	1.52 (4)
C3-C4	1.52 (6)		
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Cl}^{\text {i }}$	113 (1)	C3-N2-C5 ${ }^{\text {vi }}$	110 (2)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 1^{\text {ii }}$	108 (1)	C5-N2-C5 ${ }^{\text {v }}$	105 (3)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Cl}^{\text {iii }}$	108 (1)	C5-N2-C3 ${ }^{\text {iv }}$	114 (2)
$\mathrm{Cl}^{\mathrm{i}}-\mathrm{N} 1-\mathrm{Cl}^{\text {ii }}$	108 (1)	$\mathrm{C} 5-\mathrm{N} 2-\mathrm{C}^{\text {vi }}$	110 (2)
$\mathrm{Cl} 1^{\text {i }}-\mathrm{N} 1-\mathrm{Cl}^{\text {iii }}$	108 (1)	N2-C3-C4	112 (3)
$\mathrm{Cl}^{\text {iii }}-\mathrm{N} 1-\mathrm{Cl}^{\text {iii }}$	113 (1)	N2-C5-C6	118 (3)
$\mathrm{N} 1-\mathrm{Cl}-\mathrm{C} 2$	114 (2)	C7-N3-C9	109 (2)
$\mathrm{Br} 1-\mathrm{Cd}-\mathrm{Br} 2$	108.0 (1)	C7-N3-C11	111 (1)
$\mathrm{Br} 1-\mathrm{Cd}-\mathrm{Br} 3$	108.5 (1)	C7-N3-C11 ${ }^{\text {vi }}$	111 (1)
$\mathrm{Br} 1-\mathrm{Cd}-\mathrm{Br}^{\text {iv }}$	112.1 (1)	C9-N3-C11	113 (2)
$\mathrm{Br} 2-\mathrm{Cd}-\mathrm{Br} 3$	111.7 (1)	C9-N3-C11 ${ }^{\text {vi }}$	113 (2)
$\mathrm{Br} 2-\mathrm{Cd}-\mathrm{BrI}^{\text {iv }}$	108.0 (1)	$\mathrm{C} 11-\mathrm{N} 3-\mathrm{C} 11^{\text {vi }}$	99 (1)
$\mathrm{Br} 3-\mathrm{Cd}-\mathrm{Br} 1^{\text {iv }}$	108.5 (1)	N3-C7-C8	115 (2)
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 3{ }^{\text {v }}$	105 (4)	N3-C9-C10	119 (3)
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 5{ }^{\text {iv }}$	114 (2)	N3-C11-C12	108 (2)

Symmetry codes: (i) $1-x, 1-y, z$; (ii) $1-y, x, 1-z$; (iii) $y, 1-x, 1-z$; (iv) $\frac{3}{2}-y, \frac{3}{2}-x, z ;$ (v) $2-x, 1-y, z$; (vi) $\frac{1}{2}+y, x-\frac{1}{2}, z$.

Data collection and cell refinement: Enraf-Nonius CAD-4 software. All calculations were performed using the Xtal3.2 crystallographic program package (Hall, Flack \& Stewart, 1992).

Lists of structure factors, anisotropic displacement parameters, H atom coordinates and complete geometry have been deposited with the IUCr (Reference: DU1087). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Hall, S. R., Flack, H. D. \& Stewart, J. M. (1992). Editors. Xtal3.2 Reference Manual. Univs. of Western Australia, Australia, Geneva, Switzerland, and Maryland, USA.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.

Pohl, S. \& Saak, W. (1984). Z. Naturforsch. Teil B, 39, 1236-1240.
Ross, S. D., Siddiqi, I. W. \& Tyrrell, H. J. V. (1972). J. Chem. Soc. Dalton Trans. 15, 1611-1614.
Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. Univ. of Göttingen, Germany.
Stucky, G. D., Folkers, J. B. \& Kistenmacher, T. J. (1967). Acta Cryst. 23, 1064-1070.
Sveleba, S., Mokryi, V., Polovinko, I., Kapustyanik, V., Trybula, Z., Petrenko, P., Kiosse, G. \& Kravtsov, V. (1993). Acta Phys. Pol. A83, 777-784.
Vlokh, O. G., Polovinko, I. I., Mokryi, V. I. \& Sveleba, S. A. (1991). Kristallografiya, 36, 227-228.

Acta Cryst. (1994). C50, 1585-1588

Complexes of $\mathbf{H g C l}_{\mathbf{2}}$ and $\mathbf{H g B r}_{\mathbf{2}}$ with Nitrilotriacetamide

Ewa Skrzypczak-Jankun
Department of Chemistry, University of Toledo, Toledo, OH 43606, USA

Douglas A. Smith
Department of Chemistry and the Center for Drug
Design and Development, University of Toledo, Toledo, OH 43606, USA
(Received 5 July 1993; accepted 24 December 1993)

Abstract

The two complexes bis(μ-nitrilo- κN-triacetamide)$1 \kappa O, 1: 2 \kappa^{2} O^{\prime} ; 2 \kappa O, 1: 2 \kappa^{2} O^{\prime}$-bis(dichloromercury), $\quad[\mathrm{Hg}$ $\left.\mathrm{Cl}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{3}\right)\right]_{2}$, and bis $(\mu$-nitrilo- κN-triacetamide)$1 \kappa O, 1: 2 \kappa^{2} O^{\prime} ; 2 \kappa O, 1: 2 \kappa^{2} O^{\prime}$-bis(dibromomercury), [Hg$\left.\mathrm{Br}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{3}\right)\right]_{2}$, are isostructural, and represent the third case of metal complexes with nitrilotriacetamide [NTAM $\left.=\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CONH}_{2}\right)_{3}\right]$. $[\mathrm{Pb}$ and Co complexes have been reported by Sucheck, Finnen, Pinkerton, Skrzypczak-Jankun, Vijayakumar \& Smith (1991). Am. Crystallogr. Assoc. Meet., Toledo, Abstract PJ17.] The (NTAM: $\left.\mathrm{Hg} X_{2}\right)_{2}$ complexes are centrosymmetric oxygen-bridged dimers. Each metal ion binds to six donors ($2 X, 1 \mathrm{~N}, 3 \mathrm{O} ; X=\mathrm{Br}, \mathrm{Cl}$) at distances of 2.3-2.9 \AA, although retaining the hexagonal bipyramidal configuration observed in complexes where $\mathrm{Hg}^{\mathrm{II}}$ is eight-coordinate. Two 'empty sites' are occupied by donors from other molecules (X and N atoms) at distances of 3.7-4.1 \AA. Two out of three amine groups of NTAM participate in hydrogen bonds, while the third is utilized as a ligand in the 'empty site' of the coordination sphere of the neighboring $\mathrm{Hg}^{\mathrm{II}}$.

Comment

In our continuing study of novel amide chelating ligands, we have prepared and characterized the symmetrical unalkylated nitrilotriacetamide and a variety of mono-, di- and trialkylated derivatives (SkrzypczakJankun \& Smith, 1994; Smith, Cramer, Sucheck \& Skrzypczak-Jankun, 1992). These compounds are obtained by divergent synthesis from nitrilotriacetic acid via transamidation and cyclization to the dioxopiperazineacetamide, followed by nucleophilic ring opening with primary amines. We have studied the coordination chemistry of these ligands with a variety of metals and have reported the first isolable crystalline complex of nitrilotriacetamide with lead, which is also the first example of both a completely acyclic ligand and a 2:1 ligand-metal ratio in a ten-coordinate lead complex (Smith, Sucheck \& Pinkerton, 1992). In this paper we report the structure of the complexes (I) of nitrilotriacetamide with HgCl_{2} and HgBr_{2}.

Two NTAM: HgX_{2} moieties related by a center of symmetry form a dimer sharing O3 atoms. However, this is not a typical bi-mercury complex. The $\mathrm{Hg} \cdots \mathrm{Hg}$ distance in typical bi-mercury complexes is about $2.5 \AA$ (Taylor, 1977), while in the title complexes the shortest $\mathrm{Hg} \cdots \mathrm{Hg}$ distances are 4.4377 (3) and 4.4858 (5) \AA within the chloride and bromide dimers, respectively, and 5.0284 (3) and 5.0989 (6) \AA between dimers. In the Hg coordination sphere, a distorted hexagonal bipyramid, the halogen atoms, at distances of 2.3-2.5 \AA, occupy axial sites with an average $X-\mathrm{Hg}-\mathrm{O}, \mathrm{N}, X$ angle of 88°; the average angle between bonds to atoms in the pyramid base is 61°. The distortion of the geometry of the coordination sphere seems to be normal for many organometallic complexes with transition metals (Brown \& Kunz, 1992). Eight-coordinate $\mathrm{Hg}^{\text {II }}$ and the hexagonal bipyramidal coordination sphere have also been observed in bis(1-methylthymine)mercury(II) (Kosturko, Folzer \& Stewart, 1974) and polyethers coordinated to mercury(II) halides (Bond \& Rogers, 1993; Paige \& Richardson, 1984; Kawasaki \& Matsuura, 1984). Although the primary coordination number for $\mathrm{Hg}^{\text {II }}$ in (NTAM: $\left.\mathrm{HgX}_{2}\right)_{2}$ complexes is six, the molecule retains an arrangement of atoms around $\mathrm{Hg}^{\text {II }}$ based on a hexagonal bipyramid with two 'empty sites'. The deviation of the halogen atoms from the vertical axis of the pyramid and the lengthening of the $\mathrm{Hg}-\mathrm{X} 2$ bond in relation to $\mathrm{Hg}-X 1$ are directly related to the nature of the intra-

